Post by Andrei Tchentchik on Aug 19, 2020 15:43:23 GMT 2
(#476).- Parker Solar Probe, une sonde de la Nasa part frôler le Soleil.
Parker Solar Probe : une sonde de la Nasa part frôler le Soleil.
Article de Rémy Decourt
Publié le 06/08/2018
Archives
Alors que l'ESA s'apprête à lancer Aeolus, le satellite d'observation de la Terre le plus complexe jamais construit, la Nasa va quant à elle lancer un satellite qui s'approchera du Soleil comme aucun autre engin ne l'a fait. Parker Solar Probe réalisera les premières mesures in situ du Soleil avec à la clé des réponses à des questions fondamentales sur le fonctionnement de notre étoile. Thierry Dudok de Wit, responsable d'un capteur magnétique à bord de la sonde, nous explique ses objectifs.
Toucher le Soleil sans se brûler. Tel est l'objectif de la mission Parker Solar Probe qui doit décoller le 11 août. Pour la première fois, une sonde est envoyée au contact du Soleil pour notamment comprendre « l'origine du chauff*ge de la couronne et du vent solaire », nous explique Thierry Dudok de Wit, à la tête d'une équipe du Laboratoire de physique et chimie de l'environnement et de l'espace qui a fourni un des instruments. Les quatre suites instrumentales de cette sonde (Sweap, Wispr, Fields et Isis) de la Nasa, auxquelles ont contribué plusieurs laboratoires français liés au CNRS, « fourniront en effet des informations inédites, sur le plasma solaire, cette mélasse de particules et de champs électromagnétiques qui compose la couronne, l'origine du vent solaire et le mécanisme de chauff*ge de la couronne ».
Quelques précisions sur les fonctions de ces quatre suites instrumentales :
• Sweap (Solar Wind Electrons Alphas and Protons) : les instruments qui le composent serviront essentiellement à déterminer la vitesse, la température et la densité du vent solaire ;
• Wispr (Wide-fiels Imager for Solar PRobe) : placée sur le côté du satellite, cette caméra n'observera pas le Soleil directement, mais une partie de la couronne pour en étudier les variations ;
• Fields (Fields Experiment) : un ensemble d'instruments qui fonctionneront chacun dans des plages de fréquences différentes et donneront des informations sur les champs électrique et magnétique dans le vent solaire ;
• Isis (Integrated Science Investigation of the Sun) : cet ensemble d'instruments mesureront les particules de haute énergie - électrons, protons, ions lourds - qui sont notamment produites lors d'éruptions solaires.
Priorité scientifique et technique de la Nasa depuis de nombreuses années, ce projet est aussi considéré parmi « les plus innovants et les plus excitants par la communauté scientifique fédérée par le groupe Soleil, Héliosphère, Magnétosphère (SHM) du Cnes ». La réalisation de cette sonde s'est heurtée à de nombreuses difficultés techniques et a « nécessité un saut conceptuel très significatif ». Compte tenu des températures auxquelles sera soumise la sonde, « environ 1.600 °C », c'est évidemment une mission à « haut risque mais avec à la clé un retour scientifique important ». Au plus près du Soleil, la sonde sera à seulement six millions de kilomètres de sa surface. À cette distance du Soleil, « le rayonnement émis par l'astre est encore 500 fois supérieur à celui reçu par un vacancier sur une plage ».
Pour observer le Soleil de si près, la Nasa a dû adopter une stratégie adaptée. La sonde, d'ailleurs, ne restera pas en permanence à cette distance : « 25 survols aussi proches que possible du Soleil, jusqu'à 8,8 rayons solaires de la surface, sont prévus ». Ces survols dureront trois jours. Un durée très courte qui s'explique par l'orbite elliptique sur laquelle évoluera Parker Solar Probe mais aussi par sa vitesse.
À ce jour, le Soleil n'a jamais été étudié in situ. Solar Parker Probe ouvrira une nouvelle ère. © ESA, Nasa, EIT
Le premier satellite à pénétrer l'atmosphère extérieure de notre étoile.
La sonde sera donc lancée sur une orbite elliptique autour du Soleil avec un périhélie de 0,045 unité astronomique (UA) et un aphélie à 0,73 UA. Elle utilisera par sept fois l'assistance gravitationnelle de Vénus afin d'atteindre la couronne solaire. Ces accélérations successives additionnées de la puissante force d'attraction gravitationnelle du Soleil la feront devenir « l'engin spatial le plus rapide de tous les temps ». Au plus près du Soleil, Solar Parker Probe volera à « une vitesse impressionnante de 700.000 kilomètres par heure ».
Jusqu'à présent, les connaissances sur le Soleil venaient exclusivement d'études menées à distance, notamment grâce au satellite Soho de l'ESA et la Nasa. Avec Parker Solar Probe, « nous allons pouvoir disposer de mesures in situ, c'est une première ». En s'avançant jusqu'à seulement 8,8 rayons solaires, la sonde va se trouver dans des zones où « les flux de particules tout juste émis du Soleil sont encore chauffés et accélérés pour former le vent qui ira ensuite balayer l'héliosphère ».
Cette histoire du chauff*ge de la couronne est une énigme qui contredit l'intuition physique qui veut, normalement, qu'en « s'éloignant la température devrait décroître. Or, elle augmente. Et pas qu'un peu » ! En effet, alors que la surface du Soleil est d'environ 6.000 °C, elle atteint « 10.000 degrés dans la chromosphère et plus d'un million de degrés dans la couronne ». Pour expliquer ce processus de chauff*ge coronal, on pense que « cet apport d'énergie provient notamment des fluctuations du champ magnétique et de la multitude de petites éruptions solaires invisibles de la Terre ». Mais on en reste aujourd'hui encore aux hypothèses car « les mesures du Soleil acquises depuis la Terre ou son orbite ne permettent pas de lever les ambiguïtés ». Quant au vent solaire, ce qui intrigue les scientifiques c'est pourquoi autant de matière s'échappe du Soleil « un million de tonnes de matière s'échappent du Soleil chaque seconde » et quels sont les mécanismes qui accélèrent le vent solaire. Ce dernier apparaît sous deux formes, lente, de 300 à 400 km/s, et rapide, avec une vitesse de l'ordre de 600 à 700 km/s.
Le troisième objectif concerne « l'étude des particules de haute énergie (électrons, protons, noyaux d'hélium, etc.) qui, lors d'éruptions du Soleil sont accélérées à des vitesses proches de la vitesse de la lumière ». Les mêmes mécanismes physiques agissent ailleurs dans l'univers, mais à des échelles bien plus grandes, par exemple lors de supernovae. Dans ce sens, « la couronne solaire est un magnifique laboratoire d'astrophysique ».
Enfin, en s'aventurant dans un terrain inconnu, les scientifiques s'attendent à découvrir des « phénomènes nouveaux et inattendus ». Cela s'est produit à chaque fois « qu'une sonde s'est aventurée dans une région inexplorée du Système solaire, en l'occurrence dans la proche couronne solaire ».
Une des nombreuses séances de test pour s'assurer que la sonde fonctionnera normalement au plus près du Soleil. © Nasa
Sans surprise, la sonde sera équipée d'un bouclier thermique conçu pour résister à des températures de 1.600 degrés. Ce bouclier construit sur la base des boucliers avant de la navette spatiale se dégradera progressivement jusqu'à ne plus pouvoir la protéger efficacement. Cela dit, il est « suffisamment dimensionné pour résister au mieux pendant les 25 orbites de la mission initiale (jusqu'en 2025-2026) ». Si la plupart des instruments sont protégés du rayonnement solaire par ce bouclier, cela ne les empêche pas d'être affectés par la proximité du Soleil. Ainsi, par exemple, le rayonnement ultraviolet du Soleil va arracher au bouclier des électrons qui vont « former un nuage autour de la face avant du satellite. Cela va créer une traînée et perturber les mesures ».
Quant au vent solaire, qui peut souffler jusqu'à plus de 700 kilomètres par seconde, « il ne freinera guère la sonde car il est très ténu ». Par ailleurs, il s'échappe du Soleil en spirale et « ne viendra pas de face, mais arrivera de côté, si bien que son observation ne sera pas gênée par le bouclier ».
La limitation sur la quantité de données pouvant être récoltées est le principal compromis accepté par les scientifiques pour la réalisation de la mission. Au plus près du Soleil, les panneaux solaires seront repliés pour se loger derrière le bouclier thermique. Des batteries prendront le relais pour faire fonctionner le satellite et les instruments qui, lors de leur passage enregistreront au total quelque 90 Gigabits de données. Malheureusement, une partie non négligeable de ces données sera perdue car tout ne pourra pas être téléchargé au sol. L'orbite elliptique de la sonde l'amènera en effet si loin de la Terre que le contact avec les stations au sol ne sera pas permanent.
F I N .
Parker Solar Probe : une sonde de la Nasa part frôler le Soleil.
Article de Rémy Decourt
Publié le 06/08/2018
Archives
Alors que l'ESA s'apprête à lancer Aeolus, le satellite d'observation de la Terre le plus complexe jamais construit, la Nasa va quant à elle lancer un satellite qui s'approchera du Soleil comme aucun autre engin ne l'a fait. Parker Solar Probe réalisera les premières mesures in situ du Soleil avec à la clé des réponses à des questions fondamentales sur le fonctionnement de notre étoile. Thierry Dudok de Wit, responsable d'un capteur magnétique à bord de la sonde, nous explique ses objectifs.
Toucher le Soleil sans se brûler. Tel est l'objectif de la mission Parker Solar Probe qui doit décoller le 11 août. Pour la première fois, une sonde est envoyée au contact du Soleil pour notamment comprendre « l'origine du chauff*ge de la couronne et du vent solaire », nous explique Thierry Dudok de Wit, à la tête d'une équipe du Laboratoire de physique et chimie de l'environnement et de l'espace qui a fourni un des instruments. Les quatre suites instrumentales de cette sonde (Sweap, Wispr, Fields et Isis) de la Nasa, auxquelles ont contribué plusieurs laboratoires français liés au CNRS, « fourniront en effet des informations inédites, sur le plasma solaire, cette mélasse de particules et de champs électromagnétiques qui compose la couronne, l'origine du vent solaire et le mécanisme de chauff*ge de la couronne ».
Quelques précisions sur les fonctions de ces quatre suites instrumentales :
• Sweap (Solar Wind Electrons Alphas and Protons) : les instruments qui le composent serviront essentiellement à déterminer la vitesse, la température et la densité du vent solaire ;
• Wispr (Wide-fiels Imager for Solar PRobe) : placée sur le côté du satellite, cette caméra n'observera pas le Soleil directement, mais une partie de la couronne pour en étudier les variations ;
• Fields (Fields Experiment) : un ensemble d'instruments qui fonctionneront chacun dans des plages de fréquences différentes et donneront des informations sur les champs électrique et magnétique dans le vent solaire ;
• Isis (Integrated Science Investigation of the Sun) : cet ensemble d'instruments mesureront les particules de haute énergie - électrons, protons, ions lourds - qui sont notamment produites lors d'éruptions solaires.
Priorité scientifique et technique de la Nasa depuis de nombreuses années, ce projet est aussi considéré parmi « les plus innovants et les plus excitants par la communauté scientifique fédérée par le groupe Soleil, Héliosphère, Magnétosphère (SHM) du Cnes ». La réalisation de cette sonde s'est heurtée à de nombreuses difficultés techniques et a « nécessité un saut conceptuel très significatif ». Compte tenu des températures auxquelles sera soumise la sonde, « environ 1.600 °C », c'est évidemment une mission à « haut risque mais avec à la clé un retour scientifique important ». Au plus près du Soleil, la sonde sera à seulement six millions de kilomètres de sa surface. À cette distance du Soleil, « le rayonnement émis par l'astre est encore 500 fois supérieur à celui reçu par un vacancier sur une plage ».
Pour observer le Soleil de si près, la Nasa a dû adopter une stratégie adaptée. La sonde, d'ailleurs, ne restera pas en permanence à cette distance : « 25 survols aussi proches que possible du Soleil, jusqu'à 8,8 rayons solaires de la surface, sont prévus ». Ces survols dureront trois jours. Un durée très courte qui s'explique par l'orbite elliptique sur laquelle évoluera Parker Solar Probe mais aussi par sa vitesse.
À ce jour, le Soleil n'a jamais été étudié in situ. Solar Parker Probe ouvrira une nouvelle ère. © ESA, Nasa, EIT
Le premier satellite à pénétrer l'atmosphère extérieure de notre étoile.
La sonde sera donc lancée sur une orbite elliptique autour du Soleil avec un périhélie de 0,045 unité astronomique (UA) et un aphélie à 0,73 UA. Elle utilisera par sept fois l'assistance gravitationnelle de Vénus afin d'atteindre la couronne solaire. Ces accélérations successives additionnées de la puissante force d'attraction gravitationnelle du Soleil la feront devenir « l'engin spatial le plus rapide de tous les temps ». Au plus près du Soleil, Solar Parker Probe volera à « une vitesse impressionnante de 700.000 kilomètres par heure ».
Jusqu'à présent, les connaissances sur le Soleil venaient exclusivement d'études menées à distance, notamment grâce au satellite Soho de l'ESA et la Nasa. Avec Parker Solar Probe, « nous allons pouvoir disposer de mesures in situ, c'est une première ». En s'avançant jusqu'à seulement 8,8 rayons solaires, la sonde va se trouver dans des zones où « les flux de particules tout juste émis du Soleil sont encore chauffés et accélérés pour former le vent qui ira ensuite balayer l'héliosphère ».
Cette histoire du chauff*ge de la couronne est une énigme qui contredit l'intuition physique qui veut, normalement, qu'en « s'éloignant la température devrait décroître. Or, elle augmente. Et pas qu'un peu » ! En effet, alors que la surface du Soleil est d'environ 6.000 °C, elle atteint « 10.000 degrés dans la chromosphère et plus d'un million de degrés dans la couronne ». Pour expliquer ce processus de chauff*ge coronal, on pense que « cet apport d'énergie provient notamment des fluctuations du champ magnétique et de la multitude de petites éruptions solaires invisibles de la Terre ». Mais on en reste aujourd'hui encore aux hypothèses car « les mesures du Soleil acquises depuis la Terre ou son orbite ne permettent pas de lever les ambiguïtés ». Quant au vent solaire, ce qui intrigue les scientifiques c'est pourquoi autant de matière s'échappe du Soleil « un million de tonnes de matière s'échappent du Soleil chaque seconde » et quels sont les mécanismes qui accélèrent le vent solaire. Ce dernier apparaît sous deux formes, lente, de 300 à 400 km/s, et rapide, avec une vitesse de l'ordre de 600 à 700 km/s.
Le troisième objectif concerne « l'étude des particules de haute énergie (électrons, protons, noyaux d'hélium, etc.) qui, lors d'éruptions du Soleil sont accélérées à des vitesses proches de la vitesse de la lumière ». Les mêmes mécanismes physiques agissent ailleurs dans l'univers, mais à des échelles bien plus grandes, par exemple lors de supernovae. Dans ce sens, « la couronne solaire est un magnifique laboratoire d'astrophysique ».
Enfin, en s'aventurant dans un terrain inconnu, les scientifiques s'attendent à découvrir des « phénomènes nouveaux et inattendus ». Cela s'est produit à chaque fois « qu'une sonde s'est aventurée dans une région inexplorée du Système solaire, en l'occurrence dans la proche couronne solaire ».
Une des nombreuses séances de test pour s'assurer que la sonde fonctionnera normalement au plus près du Soleil. © Nasa
Sans surprise, la sonde sera équipée d'un bouclier thermique conçu pour résister à des températures de 1.600 degrés. Ce bouclier construit sur la base des boucliers avant de la navette spatiale se dégradera progressivement jusqu'à ne plus pouvoir la protéger efficacement. Cela dit, il est « suffisamment dimensionné pour résister au mieux pendant les 25 orbites de la mission initiale (jusqu'en 2025-2026) ». Si la plupart des instruments sont protégés du rayonnement solaire par ce bouclier, cela ne les empêche pas d'être affectés par la proximité du Soleil. Ainsi, par exemple, le rayonnement ultraviolet du Soleil va arracher au bouclier des électrons qui vont « former un nuage autour de la face avant du satellite. Cela va créer une traînée et perturber les mesures ».
Quant au vent solaire, qui peut souffler jusqu'à plus de 700 kilomètres par seconde, « il ne freinera guère la sonde car il est très ténu ». Par ailleurs, il s'échappe du Soleil en spirale et « ne viendra pas de face, mais arrivera de côté, si bien que son observation ne sera pas gênée par le bouclier ».
La limitation sur la quantité de données pouvant être récoltées est le principal compromis accepté par les scientifiques pour la réalisation de la mission. Au plus près du Soleil, les panneaux solaires seront repliés pour se loger derrière le bouclier thermique. Des batteries prendront le relais pour faire fonctionner le satellite et les instruments qui, lors de leur passage enregistreront au total quelque 90 Gigabits de données. Malheureusement, une partie non négligeable de ces données sera perdue car tout ne pourra pas être téléchargé au sol. L'orbite elliptique de la sonde l'amènera en effet si loin de la Terre que le contact avec les stations au sol ne sera pas permanent.
F I N .